

Shapes applications and tools

Jose Emilio Labra Gayo

WESO Research group University of Oviedo, Spain

WEŚO

Contents

Introduction to Knowledge graphs Types of Knowledge Graphs: RDF, Property graphs, Wikibase, RDF-Star Shaping RDF: ShEx & SHACL Shaping other types of Knowledge graphs: Wikibase and Wikidata graphs **Property Graphs RDF-Star Applications:**

Inferring shapes from data, Knowledge Graphs Subsets, etc.

Some applications of Shapes

Traditional application: Validate RDF data

Tools to understand/manage the data models

Visualizations, HTML page generation

Editors

Obtaining shapes from data

Creating subsets from Shapes

Other applications:

Continuous integration

Generate code, SPARQL queries

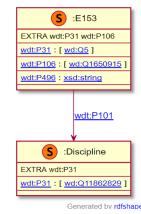
Optimize SPARQL queries or triplestores based on their shapes

• • •

Tools to understand/edit shapes schemas

UML-like diagram visualizations

Implemented in rdfshape


New implementation in rudof

XMI-based prototype allowed to edit the data models using UML editors

HTML pages

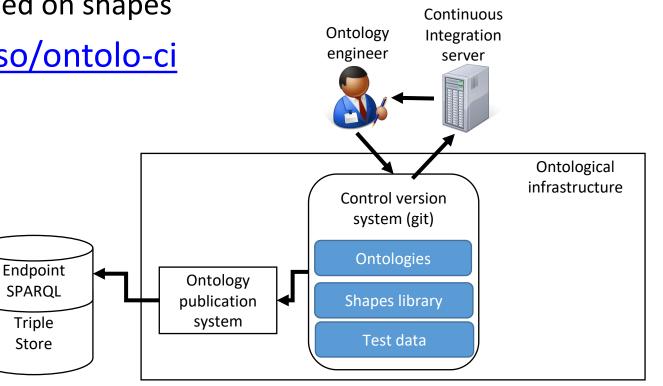
Partial visualizations to improve usability browsing large data models

3D prototype visualization of shapes schemas

Continuous integration with Shapes

Coexistence between ontologies/shapes

Shapes can validate the behaviour of inference systems


Shapes pre- and post- inference

TDD and continuous integration based on shapes

Ontolo-ci: https://github.com/weso/ontolo-ci

Gene Ontology Shapes:

https://github.com/geneontology/go-shapes

Continuous integration with Shapes

Ontolo-ci: <u>https://github.com/weso/ontolo-ci</u>

Developed as part of HERCULES-Ontology

Test-Driven-Development applied to Ontologies

Input:

- Ontologies
- Shapes
- Test data
- Input shape map (SPARQL competency question)
- Expected result shape map

	Ontoio	CI Dashboard			
Pull Request #16	5 [HOP-0165] Add sparql query fo	or CQ039			
weso/hercules	-ontology				
-o- Ontology Upda	ate				
19 Branch Master					
t Cases					
TEST NAME	DATA	SHAPE	STATUS	0 3 min 12 sec	
Researcher Test	weso:JoseEmilioLabraGayo	weso:Researcher	Confortmant	🗈 28 days ago	~
TEST NAME	DATA	SHAPE	STATUS	Õ 3 min 12 sec	
Researcher Test	weso:JoseEmilioLabraGayo	weso:Researcher	Confortmant	🗈 28 days ago	Ť
TEST NAME	DATA	SHAPE	STATUS	Õ 3 min 12 sec	
Researcher Test	weso:JoseEmilioLabraGayo	weso:Researcher	Confortmant	🖹 28 days ago	Ý
TEST NAME	DATA	SHAPE	STATUS	Ō 3 min 12 sec	
Researcher Test	weso:JoseEmilioLabraGayo	weso:Researcher	Confortmant	🖆 28 days ago	×
TEST NAME	DATA	SHAPE	STATUS	🙆 3 min 12 sec	
Researcher Test	weso:JoseEmilioLabraGayo	weso:Researcher	Confortmant	🛍 28 days ago	×
TEST NAME	DATA	SHAPE	STATUS	Ō 3 min 12 sec	
Researcher Test	weso:JoseEmilioLabraGayo	weso:Researcher	Confortmant	28 days ago	\sim

WESO

Creating shapes

Shapes editors

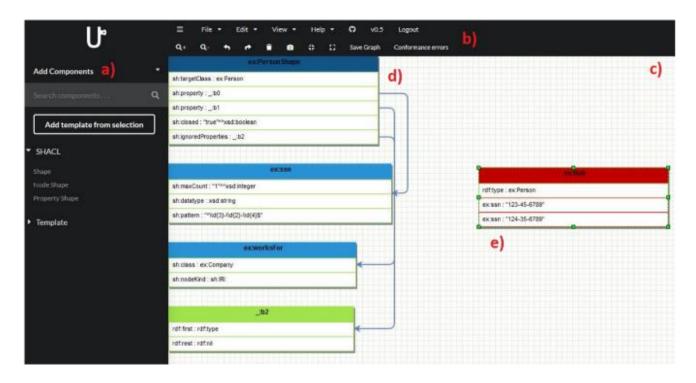
- **Text-based editors**
- Visual editors and visualizers
- Obtaining shapes from...
 - Spreadsheets
 - **RDF** data
 - Ontologies
 - Other schemas (XML Schema)

Text-based editors

YaSHE: Forked from YASGUI: <u>http://www.weso.es/YASHE/</u>

Syntax highlighting Auto-completion

Shapes author tools: Top Braid Composer


Form based editor Integrated with Top Braid product

■ *UserBook.shapes.ttl 🛛		
Node Shape Form		~
Name: Person		
 Annotations 		
 Constraints 	Image: Second system Image: Second system Image: Second system Image: Second system	
sh:property ▽	Predicate: knows	
sh:sparql ▽		
 Targets 	Also globally declare rdf:Property	
sh:targetClass ▽	Display Name: name	
sh:targetObjectsOf ▽	Description:	
sh:targetSubjectsOf ▽	Name of a person	
sh:targetNode ▽		
sh:target ▽		
sh:deactivated ▽	Count: Unlimited [0.*] V	
 Other Properties 	Node kind: Literals ~	
dash:abstract ▽		
dash:applicableToClass 🗢	Class:	
dash:closedByTypes ♡	Datatype: xsd:string ~	
dash:defaultViewForRole \bigtriangledown	Value shape	
dash:resourceAction ~	value snape	
Form Browser Diagram Graph		×
	OK Cancel	
Imports ⋈ ◆ Instances ■		
> 强 http://datashapes.org/das	sn (owi:imports from / lopBraid/SHACL/dash.tti)	

Shapes author tools: UnSHACLed

Visual SHACL Editor in Javascript

B. De Meester, P. Heyvaert, A. Dimou, and R. Verborgh, "Towards a Uniform User Interface for Editing Data Shapes," in Proceedings of the 4th International Workshop on Visualization and Interaction for Ontologies and Linked Data, 2018, vol. 2187.

Shapes author tools: ShEx Author

ShEx-Author: Inspired by Wikidata Query Service

2 column: Visual one synchronized with text based

Assistant	t					1 -	PREFIX xsd:	<http: 2001="" www.w3.org="" xmlschema#=""></http:>
						2	PREFIX wd:	<http: entity="" www.wikidata.org=""></http:>
Shape	IriRef	Researche	er			3	PREFIX wdt:	<http: <="" direct="" prop="" th="" www.wikidata.org=""></http:>
<u>^</u>						4	<researcher></researcher>	t.
	Triple	Prefix •	wdt	•	P31	6	wdt:P31	۱ IRI ;
	Triple	Prefix •	wdt	Ŧ	P106	7	wdt:P106	IRI ?;
					Diai	8	wdt:P101	<pre>@<discipline>?;</discipline></pre>
	Triple	Prefix •	wdt	•	P101	9	wdt:P496	<pre>xsd:string ? ;</pre>
	Triple	Prefix: •	wdt	T	P496	10	wdt:P1153	<pre>xsd:string * ;</pre>
	Triple	Prefix: •	wdt	Ŧ	P1153	11	}	
	+ Triple					12	<discipline></discipline>	ſ
						14	wdt:P31	1 IRI * ;
						15	}	,
Shape	IriRef	Discipline	9		<u> </u>	16	-	
<u>^</u>						 17		
	Triple	Prefix •	wdt	•	P31			
	+ Triple							

Shapes visualization

S :E153

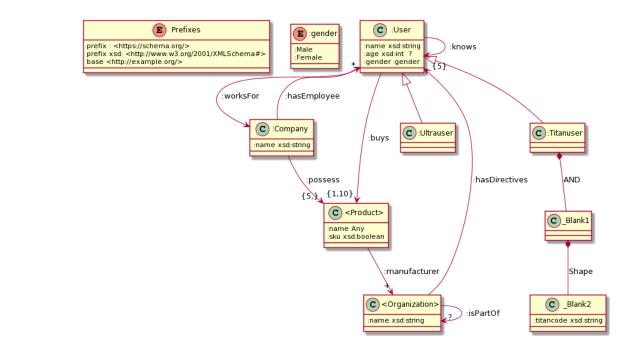
vdt:P106 : [wd:Q1650915

S :Discipline

wdt:P31 : [wd:Q11862829

EXTRA wdt:P31

vdt:P101


Generated by rdfshape

EXTRA wdt:P31 wdt:P106 wdt:P31 : [wd:Q5]

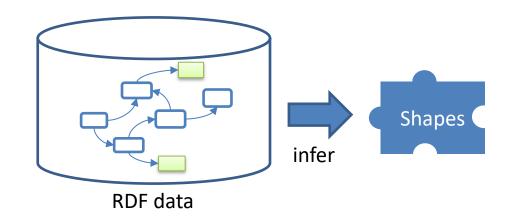
vdt:P496 : xsd:string

Integrated in RDFShape/Wikishape

- UMLSHaclex UML diagrams for ShEx
- <u>ShUMLex:</u> Conversion to UML through XMI

Shapes from spreadsheets

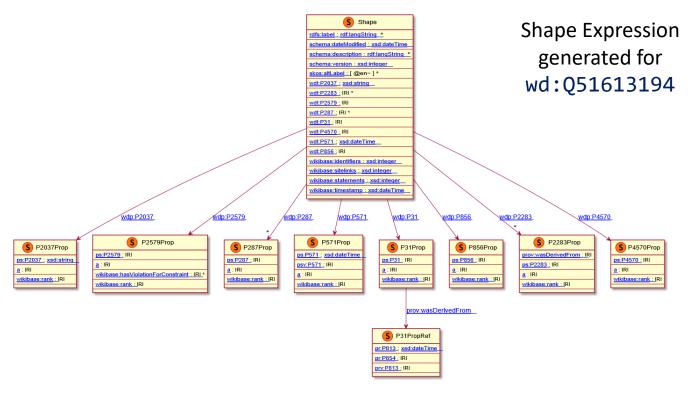
SKOS-Play was used at ELI to generate SHACL shapes from Excel ShExstatements: <u>https://shexstatements.toolforge.org/</u> ShExCSV: CSV representation of Shapes Hermes: ShExCSV processor, <u>https://github.com/weso/hermes</u> Creating data models using spreadsheets <u>DCTAP</u> data models (templates in XLSX, CSV), recently added to rudof


Generating Shapes from RDF data

Useful use case in practice

Some prototypes

RDFShape: <u>http://rdfshape.weso.es</u>


sheXer: <u>http://shexer.weso.es/</u>

Shapes from data: RDFShape

RDFShape/Wikishape implement a basic prototype to derive Shapes from RDF data

Shapes from data: sheXer

sheXer: https://github.com/DaniFdezAlvarez/shexer

Implemented as a Python library

Supports Shapes generation from large SPARQL endpoints

Can generate shapes from sampling

ShEx consolidator can be used for large RDF data

Why creating Knowledge Graphs subsets?

Some current problems...

Large knowledge graphs are difficult to handle SPARQL queries require computational resources Endpoints usually impose limits (timeouts...) Contents are continually evolving Results of SPARQL queries now may be different later Research based on large KGs difficult to be reproducible

Some applications for KG subsets (1)

Performance

Enable SPARQL queries that don't work with whole KG Data integration

Create domain specific subsets and integrate with other data Reproducibility

Snapshots of KG contents that can be cited & reused

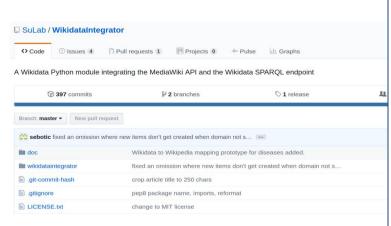
Some applications for KGs subsets (2)

Transformation and enrichment

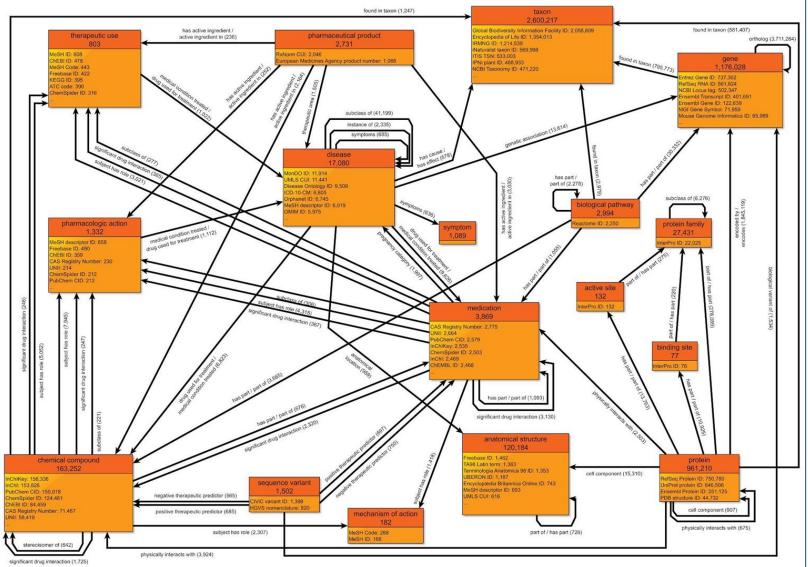
Add and integrate content from different KGs KG in your pocket

Create mobile apps based on some subset

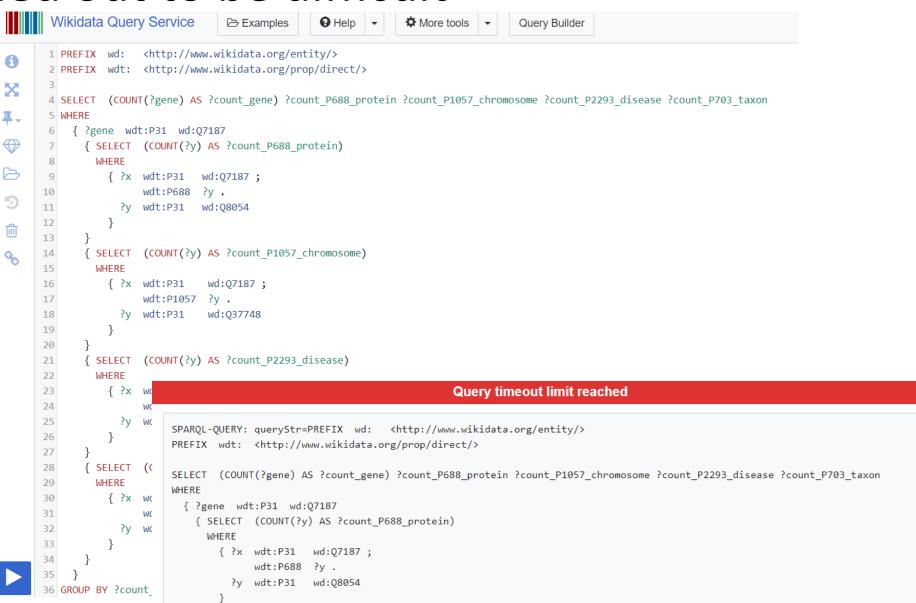
KG analysis


Create and compare subsets from historical dumps

License combination


Combine subsets from KG with some license (CCO) with others

Motivating use case: GeneWiki project

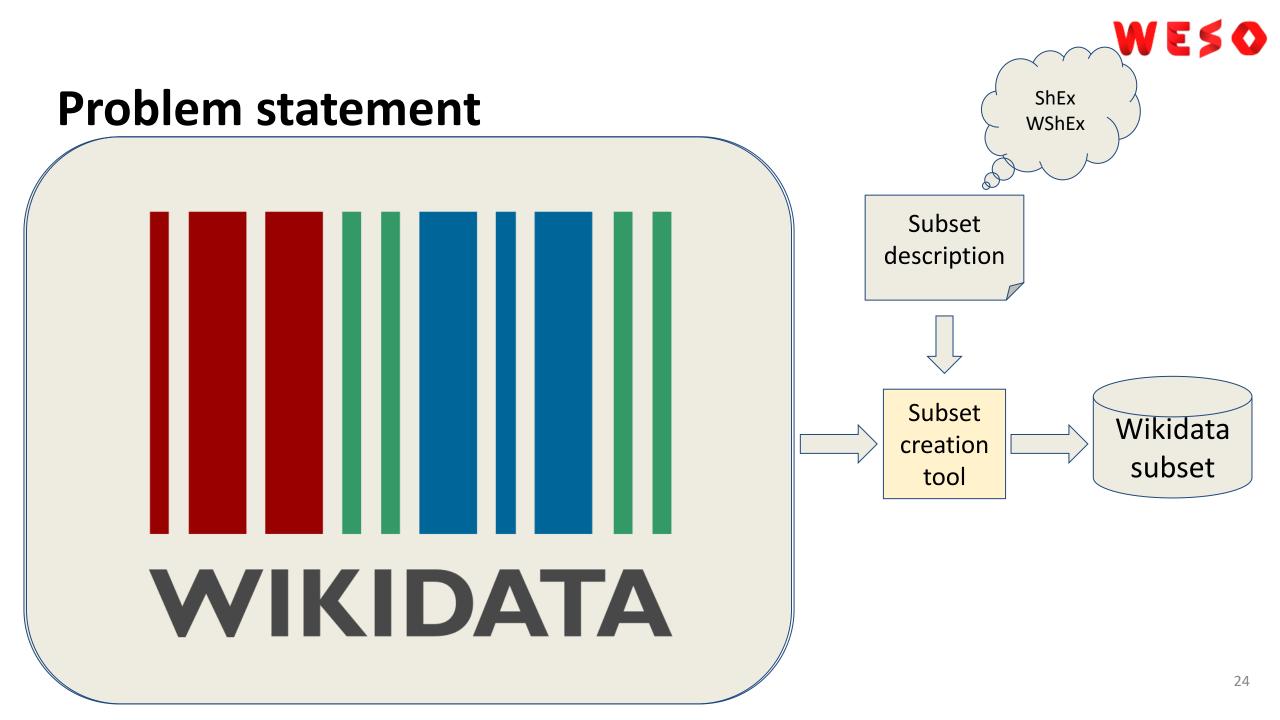


Source: Wikidata as a knowledge graph for the life sciences, A. Waagmeester et al, https://elifesciences.org/articles/52614

Reusing turned out to be difficult

Example: counting number of genes and associated elements:

- Proteins
- Chromosomes
- Disease
- Taxons

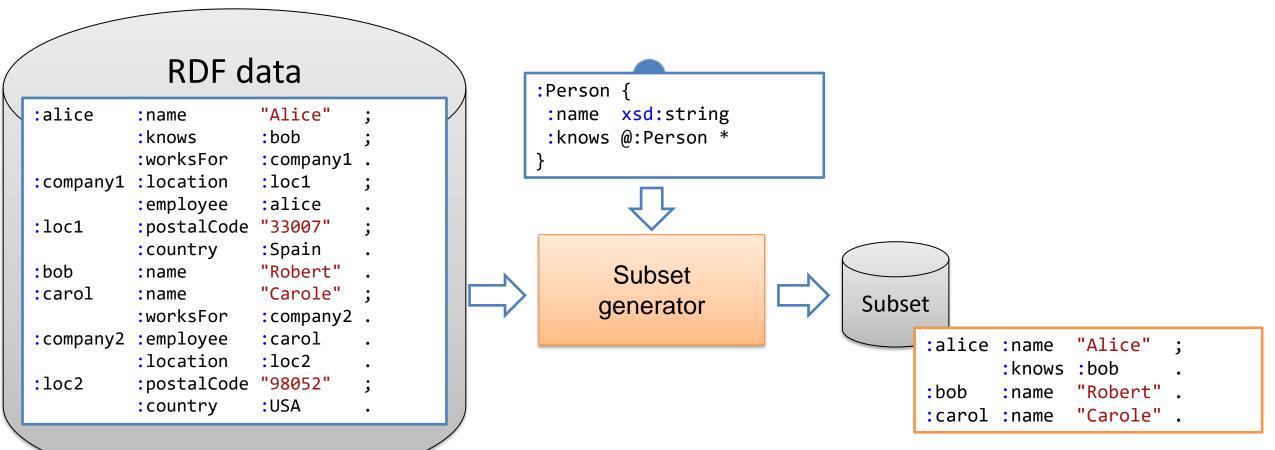


Wikidata subsetting efforts

Collaborative research driven by a practical need

Most of the advances were triggered by SWAT4HCLS and Biohackathons

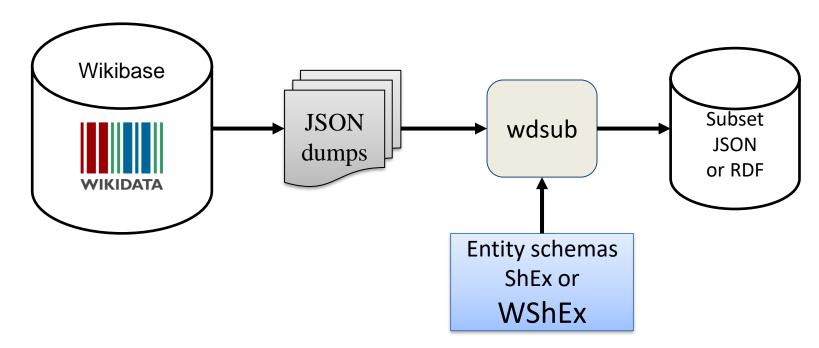
- 12th SWAT4HCLS conference, 2019. <u>Wikidata:WikiProject Schemas/Subsetting Wikidata</u>
- Europe Biohackathon, 2020, project 35 [preprint]
- Europe Biohackathon, 2021, project 21
- Europe Biohackathon, 2022 project 11, [preprint]
- Japan Biohackathon, 2023 [preprint]
- 2023, Paper: <u>Wikidata subsetting: approaches, tools and evaluation</u>, accepted at Semantic Web Journal



Subsetting based on ShEx

Generate subsets from ShEx

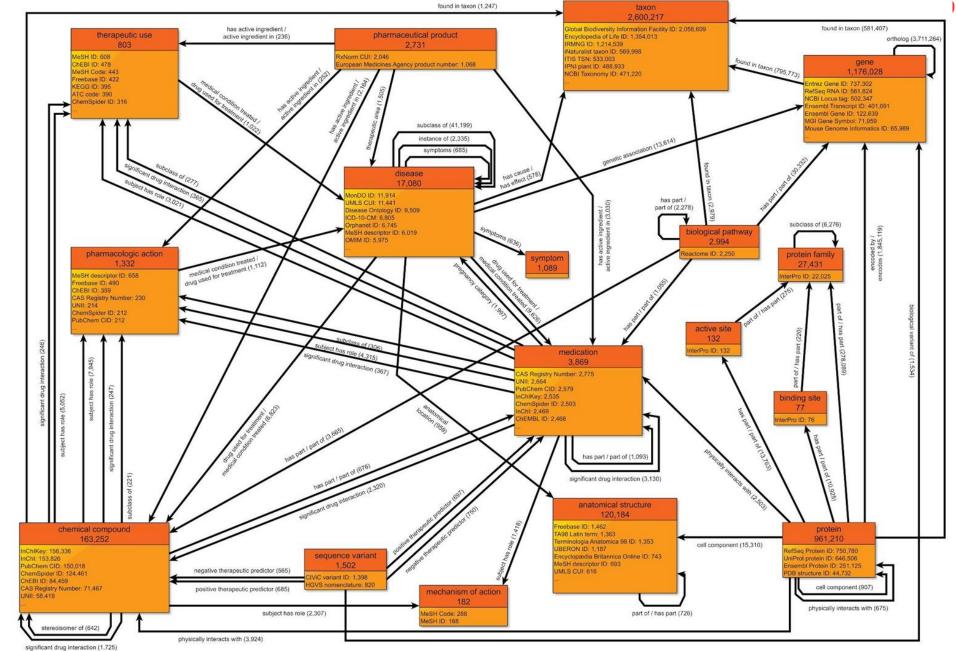
ShEx describes the contents of the expected subset

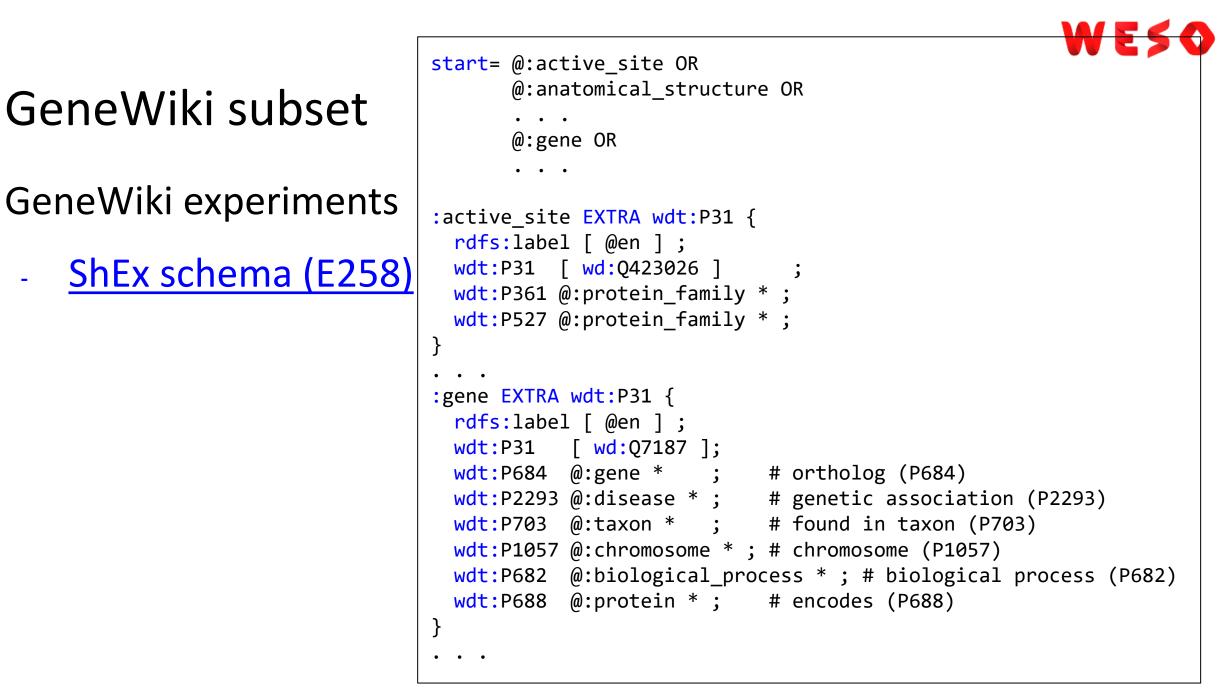

wdsub

Input:

- ShEx/WShEx schema
- Wikidata dumps in JSON

Output


- Dumps in JSON/RDF

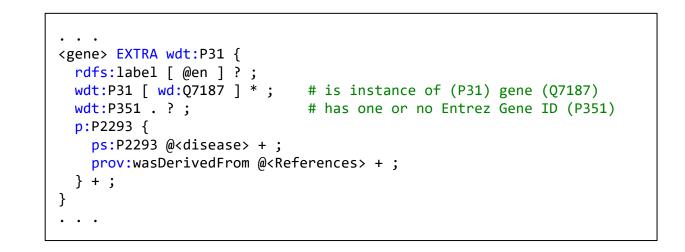

Link: <u>https://github.com/weso/wdsub</u> Docker (CLI): <u>wesogroup/wdsub:0.0.32</u>

GeneWiki project

Data model

Results about GeneWiki experiment

Class	2015	2016	2017	2018	2019	2020	2021	2022	Wikidata
active_site	0	0	132	132	132	132	132	132	132
anatomical_structure	4	62	470	483	614	732	738	812	746
binding_site	0	0	76	76	76	77	77	77	76
biological_pathway	0	0	425	2754	2929	3279	3429	3486	3554
biological_process	11	12	31263	31222	42058	43417	42061	41857	42449
cellular_component	1	1	4017	4081	4239	4298	4137	4139	4211
chemical_compound	19144	21128	156718	157018	157685	1050488	1201719	1245041	1249719
chromosome	0	0	149	152	432	9167	9224	9223	9224
disease	124	931	9578	9926	11439	13197	5395	5607	5698
gene	17	20	679372	677836	811574	1196193	1196334	1211506	Timed-Out
medication	46	2127	2459	2472	2699	3210	3336	3424	3450
molecular_function	0	0	9413	9801	11258	11226	10940	10898	11246
pharmaceutical_product	0	0	1067	1067	2725	2754	2759	2774	2784
protein_domain	2	3	9581	8847	9348	10770	11274	11709	11736
protein_family	0	212	20912	20632	22240	22170	23277	24204	24266
protein	118	166	450785	487781	579979	980520	985755	988099	Timed-Out
sequence_variant	0	0	1411	918	774	724	695	686	686
supersecondary_structure	0	0	687	687	688	688	694	696	696
symptom	16	235	273	283	328	366	319	335	343
taxon	1920049	2121404	2213907	2318731	2492613	2769303	2929068	3478871	3491430


Other examples

The paper contains other other studies about

Multilingual extraction

```
start= @:gene OR
      @:taxon
:gene EXTRA wdt:P31 {
 rdfs:label
                    [ @en @es @fa @nl ]
 schema:description [ @en @es @fa @nl ]
 skos:altLabel
                    [ @en @es @fa @nl ] *
 wdt:P31
                    [ wd:Q7187 ] ;
                    @:taxon *
 wdt:P703
                                ;
}
:taxon EXTRA wdt:P31 {
 rdfs:label
                    [ @en @es @fa @nl ] ;
 schema:description [ @en @es @fa @nl ] ;
                    [ @en @es @fa @nl ] * ;
  skos:altLabel
  wdt:P31
                     [ wd:Q16521 ] ;
}
```

Qualifiers and references

More information at paper: <u>Wikidata subsetting: approaches, tools and evaluation</u>, S. Hosseini, J. Labra, A. Waagmeester, A. Ammar, C. González, D. Slenter, S. Ui-Hasan, E. Willighagen, F. McNeill, A. Gray, accepted at Semantic Web Journal

Subsets based on Pregel algorithm

Pregel algorithm = parallel algorithm proposed at Google

"think like a vertex"

2 prototype implementations (work in progress)

- Scala: SparkWDSub
 - We were able to create subsets in 36 minutes with large cluster (512 cores)
- Rust: pregel-rs based on Polars and
 - It can process Wikidata-dumps
 - Recently applied to large RDF data: UniProt

More information at paper:

- <u>Creating Knowledge Graphs Subsets using Shape Expressions</u>, J. Labra, arXiv:2110.11709
- <u>Using Pregel to create Knowledge Graphs subsets described by non-recursive Shape Expressions</u>, A. Préstamo, J. Labra, accepted at KGSWC' 23

Uls and shapes

Shapes can provide hints to generate user interfaces/forms
SHACL core defines a basic vocabulary: sh:group, sh:order, ...
ShEx annotations can also be used to define UI declarations
Example: UI ontology annotations

Uls and Shapes: ShExPath and ShEx-Forms

ShEx Path can be used to point to parts of a ShEx schema https://shexspec.github.io/spec/ShExPath

ShEx generated forms demo based on UI ontology: https://ericprud.github.io/shex-form/?manifestURL=examples/manifest.json

Uls and shapes: TopQuadrant

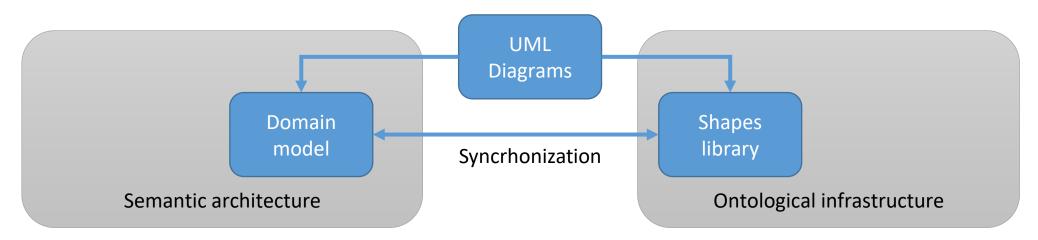
Form generation from SHACL

DASH vocabulary:

http://datashapes.org/forms.html

Holger's Address	s ×							8 0 ×		
Explore -	Modify 🗸	Cano	el Preview	Save Changes		Australian address shape	•	a -		
	er's Add HolgersAddres									
 Address 										
street addre	ess:	3 Teew	ah Close					~ 0		
suburb:	suburb: Kewarra Beach									
state:		QLD •								
postal code	:	48791						- D		
 Contact 										
email:		holger@knublauch.com								
		holger	etopquadrant.	com				~ •		
phone num	ber: G	D						••		

Generating code from shapes

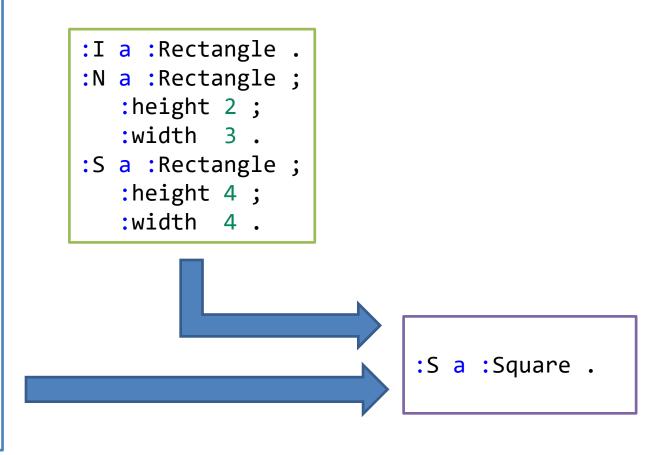

Domain model based on Shapes

Clean architecture pattern

Domain model as central element

- Simple classes (POJO): Plain Old Java Objects
- Shapes synchronization

Application logic and services based on domain model



Shapes and rules

SHACL Advanced Features describes SHACL rules

```
:Rectangle a rdfs:Class, sh:NodeShape ;
 rdfs:label "Rectangle" ;
 sh:property [ sh:path :height ;
  sh:datatype xsd:integer ;
  sh:maxCount 1 ; sh:minCount 1 ;
  sh:name "height" ] ;
 sh:property [sh:path :width ;
  sh:datatype xsd:integer ;
  sh:maxCount 1 ; sh:minCount 1 ;
  sh:name "width" ; ] ;
 sh:rule [ a sh:TripleRule ;
  sh:subject sh:this ;
  sh:predicate rdf:type ;
  sh:object :Square ;
  sh:condition :Rectangle ;
  sh:condition [
   sh:property [
    sh:path
             :width ;
    sh:equals :height ;
 ; ] ; ] .
```


Shapes ecosystems

Wikidata provides a whole ShEx ecosystem

Entity schemas can evolve and relate between each other

Directory: https://www.wikidata.org/wiki/Wikidata:Database_reports/EntitySchema_directory

Different schemas for the same entities?

Some schemas stress some aspects while others stress others

Evolution of schemas

Searching entity schemas

Conclusions

Shapes can be a very important aspect of Knowledge Graphs

Graph data is flexible and shapes also

Shapes ecosystems with:

Prescriptive shapes

Descriptive shapes

Suggestive shapes (can *suggest* properties to employ)

Domain experts are a key aspect of this

END OF PRESENTATION