
ShEx & SHACL
compared

Jose Emilio Labra Gayo
WESO Research group

University of Oviedo, Spain

Several common features…

Employ the word "shape"

Validate RDF graphs

Node constraints

Constraints on incoming/outgoing arcs

Defining cardinalities on properties

RDF syntax

Extension mechanism

ShEx SHACL

But several differences…

Underlying philosophy

Syntactic differences

Notion of a shape

Syntactic differences

Default cardinalities

Shapes and Classes

Recursion

Repeated properties

Property pair constraints

Uniqueness

Extension mechanism

Jose E. Labra Gayo, Eric Prud’hommeaux, Iovka Boneva, Dimitris

Kontokostas, Validating RDF Data, Synthesis Lectures on the

Semantic Web, Vol. 7, No. 1, 1-328, DOI:

10.2200/S00786ED1V01Y201707WBE016, Morgan & Claypool

(2018)Online version: http://book.validatingrdf.com/

More info in Chapter 7 of:

https://doi.org/10.2200/S00786ED1V01Y201707WBE016
http://book.validatingrdf.com/

Emphasis on
description - validation - constraints

Description
Tell what something is about
What data we want/expect

Constraint
Rule that something has to obey
What data we don’t want/expect

ShEx

SHACL

Validation
Check that data conforms with

expectations

Underlying philosophy

ShEx is more schema based

Shape ≈ grammar

More focus on validation results

Result shape maps = Conforming and
non-conforming nodes

SHACL is more constraint based

Shapes ≈ collections of constraints

More focus on validation errors

Validation report = set of violations

Description ConstraintValidation

Design principles

ShEx = based on regular expressions

Cyclic data models = part of the language

SHACL = designed from Data Shapes WG

Cyclic data models = implementation
dependent

Syntactic differences

ShEx design focused on human-readability

Followed programming language design
methodology

1. Abstract syntax

2. Different concrete syntaxes
Compact

JSON-LD

RDF

...

SHACL design focused on RDF vocabulary

Design centered on RDF terms

Lots of rules to define valid shapes graphs
https://w3c.github.io/data-shapes/shacl/#syntax-rules

Compact syntax created after RDF syntax

Semantic specification

ShEx semantics: mathematical concepts

Well-founded semantics*
Support for recursión and negation

Inspired by type systems and RelaxNG

SHACL semantics = textual description + SPARQL

SHACL terms described in natural language
SPARQL fragments used as helpers

Recursion is implementation dependent*

*Semantics and Validation of Shapes Schemas for RDF
Iovka Boneva Jose Emilio Labra Gayo Eric Prud'hommeaux
ISWC'17

Several proposals to add recursion:
*Semantics and Validation of Recursive SHACL
Julien Corman, Juan L. Reutter, Ognjen Savkovic, ISWC’18
And more recent ones based on ASP concepts

Most were proposed after the spec

Compact Syntax

ShEx compact syntax designed along the
language

Test-suite with long list of tests

Round-trip with JSON-LD and RDF syntax

SHACL compact syntax is lossy

A WG Note proposed a compact syntax

It covers a subset of SHACL core

SHACL-C is complemented with several production rules

Some files can be parsed by the grammar but should be
rejected by the rules

partial

Compact
Syntax

JSON-LD/RDF
Syntax Compact

Syntax
JSON-LD/RDF

Syntax

Compact syntax

prefix schema: <http://schema.org/>
prefix xsd: <http://www.w3.org/2001/XMLSchema#>
prefix : <http://www.example.org/>

shape :UserShape -> :User {
closed=true ignoredProperties=[rdf:type] .
schema:name xsd:string [0..1] .
schema:gender in = [schema:Male schema:Female] .
schema:birthDate xsd:date [0..1] .
schema:knows :User [0..*] .

}

prefix schema: <http://schema.org/>
prefix xsd: <http://www.w3.org/2001/XMLSchema#>
prefix : <http://www.example.org/>

:UserShape CLOSED EXTRA rdf:type {
schema:name xsd:string ? ;
schema:gender [schema:Male schema:Female] ;
schema:birthDate xsd:date ? ;
schema:knows @:User *

}

RDF vocabulary
ShEx vocabulary ≈ abstract syntax

ShEx RDF vocabulary obtained from abstract
syntax
ShEx RDF serializations typically more verbose

They can be round-tripped to Compact syntax

SHACL designed as an RDF vocabulary

Some rdf:type declarations can be omitted
SHACL RDF serialization typically more readable

:User a sx:Shape;
sx:expression [a sx:EachOf ;

sx:expressions (
[a sx:TripleConstraint ;

sx:predicate schema:name ;
sx:valueExpr [a sx:NodeConstraint ;
sx:datatype xsd:string]

]
[a sx:TripleConstraint ;

sx:predicate schema:birthDate ;
sx:valueExpr [a sx:NodeConstraint ;

sx:datatype xsd:date] ;
sx:min 0

])
].

:User a sh:NodeShape ;
sh:property [sh:path schema:name ;
sh:minCount 1; sh:maxCount 1;
sh:datatype xsd:string
];
sh:property [sh:path schema:birthDate ;
sh:maxCount 1;
sh:datatype xsd:date
] .

Notion of Shape

In ShEx, shapes only define structure of nodes

Shape maps select which nodes are validated with
which shapes

Goal: separation of concerns

In SHACL, shapes define structure and can
have target declarations
Shapes can be associated with nodes or sets of nodes

through target declarations
Shapes may be less reusable in other contexts

Although target declarations can be written in a separate
graph (recommended)

:User a sh:NodeShape, rdfs:Class ;
sh:targetClass :Person ;
sh:targetNode :alice ;
sh:nodeKind sh:IRI ;
sh:property [
sh:path schema:name ;
sh:datatype xsd:string
] .

:User IRI {
schema:name xsd:string
} target

declarations

structure

:alice@:User,
{FOCUS rdf:type :Person}@:User

Shape

Shape map

Shape

Default cardinalities

ShEx: default = (1,1)

:User {
schema:givenName xsd:string
schema:lastName xsd:string
}

:User a sh:NodeShape ;
sh:property [sh:path schema:givenName ;
sh:datatype xsd:string ;
];
sh:property [sh:path schema:lastName ;
sh:datatype xsd:string ;
] .

:alice schema:givenName "Alice" ;
schema:lastName "Cooper" .

:bob schema:givenName "Bob", "Robert" ;

schema:lastName "Smith", "Dylan" .

:carol schema:lastName "King" .

:dave schema:givenName 23;
schema:lastName :Unknown .

SHACL: default = (0,unbounded)

☺ ☺

☺

☺

 ☺ = conforms to Shape

 = doesn't conform

Property paths

ShEx shapes describe neighborhood of focus
nodes: direct/inverse properties

Recursion paths can be emulated by nested
shapes
Sometimes requiring auxiliary recursive shapes

SHACL shapes can also describe whole
property paths following SPARQL paths

:GrandSon a sh:NodeShape ;
sh:property [
sh:path (schema:parent schema:parent) ;
sh:minCount 1
];
sh:property [
sh:path [
sh:alternativePath (:father :mother)]

];
sh:minCount 1
] ;
sh:property [
sh:path [sh:inversePath :knows]]
sh:node :Person ;
sh:minCount 1

]
.

:GrandSon {
:parent { :parent . + } + ;
(:father . | :mother .) + ;
^:knows :Person
}

Property paths

ShEx shapes describe neighborhood of focus
nodes: direct/inverse properties

Recursion paths can be emulated with
auxiliary shapes

SHACL shapes can use property paths

:GrandParent a sh:NodeShape ;
sh:property [
sh:path [sh:zeroOrMorePath schema:knows] ;
sh:node :Person ;
] .

:Person a sh:NodeShape ;
sh:property [
sh:path schema:name ;
sh:datatype xsd:string ;
sh:minCount 1; sh:maxCount 1
] .

:GrandParent {
schema:knows @:PersonKnown*;

}
:PersonKnown @:Person {
schema:knows @:PersonKnown*

}

:Person {
schema:name xsd:string
}

Property paths

ShEx shapes describe neighborhood of focus
nodes: direct/inverse properties

Control about cardinalities

SHACL shapes can use property paths

:Invoice a sh:NodeShape ;
sh:property [
sh:path (:payment :amount) ;
sh:datatype xsd:decimal ;
sh:minCount 1; sh:maxCount 1

] .

:Invoice {
:payment {
:amount xsd:decimal

}
}

Try it: https://tinyurl.com/y97npq5s Try it: https://tinyurl.com/yabl4v95

:i1 :payment [:amount 3.0] .

:i2 :payment [:amount 3.0] ;
:payment [:amount 2.0] .

:i3 :payment [:amount 2.0] ;
:payment [:amount 2.0] .

Some pathological cases

☺ ☺

☺ ?

https://tinyurl.com/y97npq5s
https://tinyurl.com/yabl4v95

Inference

ShEx doesn't mess with inference

Validation can be invoked before or after
inference

rdf:type is considered an arc as any other
No special meaning

The same for rdfs:Class, rdfs:subClassOf,
rdfs:domain, rdfs:range, ...

Some constructs have special meaning

The following constructs have special
meaning in SHACL
rdf:type

rdfs:Class

rdfs:subClassOf

owl:imports

Other constructs like rdfs:domain,
rdfs:range,... have no special meaning

sh:entailment can be used to indicate that
some inference is required

Inference and triggering mechanism
ShEx has no interaction with inference

It can be used to validate a reasoner

In SHACL, RDF Schema inference can affect
which nodes are validated

:User a sh:NodeShape, rdfs:Class ;
sh:property [sh:path schema:name ;
sh:datatype xsd:string;

].

RDFS
inference

No RDFS
inference

:Teacher rdfs:subClassOf :User .
:teaches rdfs:domain :Teacher .

:alice a :Teacher ;
schema:name 23 .

:bob :teaches :Algebra ;
schema:name 34 .

:carol :teaches :Logic;
schema:name "King" .

Ignored

Ignored

☺

With or without
RDFS inference

:User {
schema:name xsd:string
}

☺

☺ = conforms to Shape

 = doesn't conform

Some implicit RDFS inference but not all

Repeated properties

ShEx (;) operator handles repeated
properties

SHACL needs qualifiedValueShapes for
repeated properties

Direct approximation (wrong)::Person {
:parent {:gender [:Male] } ;
:parent {:gender [:Female] }

}

:Person a sh:NodeShape;
sh:property [sh:path :parent;
sh:node [sh:property [sh:path :gender ;
sh:hasValue :Male ;]] ;

];
sh:property [sh:path :parent;
sh:node [sh:property [sh:path :gender ;
sh:hasValue :Female]];

]
.

Example. A person must have 2 parents,
one male and another female

Repeated properties

ShEx (;) operator handles repeated properties
SHACL handles repeated properties with
qualifiedValueShapes

Solution with qualifiedValueShapes:
:Person {
:parent {:gender [:Male] } ;
:parent {:gender [:Female] }

}

:Person a sh:NodeShape, rdfs:Class ;
sh:property [sh:path :parent;
sh:qualifiedValueShape [sh:property [sh:path :gender ;
sh:hasValue :Male]] ;
sh:qualifiedMinCount 1; sh:qualifiedMaxCount 1

];
sh:property [sh:path :parent;
sh:qualifiedValueShape [sh:property [sh:path :gender ;
sh:hasValue :Female]] ;
sh:qualifiedMinCount 1; sh:qualifiedMaxCount 1

] ;
sh:property [sh:path :parent;

sh:minCount 2; sh:maxCount 2
]
.

Example. A person must have 2 parents, one male and another female

It needs to count all
possibilities

Recursion

ShEx handles recursion

Well founded semantics
Recursive shapes are implementation
dependent in SHACL*

:Person {
schema:name xsd:string ;
schema:knows @:Person*
}

:Person a sh:NodeShape ;
sh:property [sh:path schema:name ;
sh:datatype xsd:string
];
sh:property [sh:path schema:knows ;
sh:node :Person
]
.

*Semantics and Validation of Recursive SHACL
Julien Corman, Juan L. Reutter and Ognjen Savkovic, ISWC'18

Recursion (with target declarations)

ShEx handles recursion
Well founded semantics with stratified negation

Recursive shapes are undefined in SHACL

Implementation dependent

Can be simulated with target declarations

Example with target declatations

It needs discriminating arcs

:Person {
schema:name xsd:string ;
schema:knows @:Person*
}

:Person a sh:NodeShape, rdfs:Class ;
sh:property [sh:path schema:name ;
sh:datatype xsd:string
];
sh:property [sh:path schema:knows ;
sh:class :Person
]
. It requires all nodes to have rdf:type Person

Recursion (with property paths)

ShEx handles recursion

Well founded semantics

Recursive shapes are undefined in SHACL

Implementation dependent

Can be simulated property paths

:Person {
schema:name xsd:string ;
schema:knows @:Person*
}

:Person a sh:NodeShape ;
sh:property [
sh:path schema:name ; sh:datatype xsd:string];
sh:property [
sh:path [sh:zeroOrMorePath schema:knows];
sh:node :PersonAux
].

:PersonAux a sh:NodeShape ;
sh:property [
sh:path schema:name ; sh:datatype xsd:string
].

:Person a sh:NodeShape ;
sh:targetNode :alice ;
sh:closed true ;
sh:or (
[sh:path schema:name ; sh:datatype xsd:string]
[sh:path foaf:name ; sh:datatype xsd:string]
) .

Closed shapes
In ShEx, closed affects all properties In SHACL, closed only affects properties

declared at top-level

Properties declared inside other shapes
are ignored

:Person CLOSED {
schema:name xsd:string

| foaf:name xsd:string
}

:alice schema:name "Alice" .☺

☺ = conforms to Shape

 = doesn't conform

Closed shapes and paths

Closed in ShEx acts on all properties In SHACL, closed ignores properties
mentioned inside paths

:Person a sh:NodeShape ;
sh:closed true ;
sh:property [
sh:path [
sh:alternativePath
(schema:name foaf:name)

] ;
sh:minCount 1; sh:maxCount 1;
sh:datatype xsd:string] ;

.

:Person CLOSED {
schema:name xsd:string |
foaf:name xsd:string

}

:alice schema:name "Alice".☺
☺ = conforms to Shape

 = doesn't conform

Property pair constraints

This feature was posponed

Proposal in github issue

SHACL supports equals, disjoint, lessThan, ...

:UserShape a sh:NodeShape ;
sh:property [
sh:path schema:givenName ;
sh:datatype xsd:string ;
sh:disjoint schema:lastName

] ;
sh:property [
sh:path foaf:firstName ;
sh:equals schema:givenName ;

] ;
sh:property [
sh:path schema:birthDate ;
sh:datatype xsd:date ;
sh:lessThan :loginDate

] .

:UserShape {
$<givenName> schema:givenName xsd:string ;
$<firstName> schema:firstName xsd:string ;
$<birthDate> schema:birthDate xsd:date ;
$<loginDate> :loginDate xsd:date ;
$<givenName> = $<firstName> ;
$<givenName> != $<lastName> ;
$<birthDate> < $<loginDate>
}

Modularity

ShEx has EXTERNAL and import keywords

import imports shapes from URI

external declares that a shape
definition can be retrieved elsewhere

SHACL supports owl:imports

SHACL processors follow owl:imports

<> owl:imports <http://example.org/UserShapes>

:TeacherShape a sh:NodeShape;
sh:node :UserShape ;
sh:property [sh:path :teaches ;
sh:minCount 1;

] ;

:UserShape a sh:NodeShape ;
sh:property [sh:path schema:name ;
sh:datatype xsd:string
] .

http://example.org/UserShapes

import <http://example.org/UserShapes>

:TeacherShape :UserShape AND {
:teaches . ;
:teacherCode external
}

:UserShape {
schema:name xsd:string
}

http://example.org/UserShapes

Reusability - Extending shapes (1)

ShEx shapes can be extended by conjunction SHACL shapes can also be extended by conjunction

:Product a sh:NodeShape, rdfs:Class ;
sh:property [sh:path schema:productId ;
sh:datatype xsd:string

];
sh:property [sh:path schema:price ;
sh:datatype xsd:decimal

].

:SoldProduct a sh:NodeShape, rdfs:Class ;
sh:and (
:Product
[sh:path schema:purchaseDate ;
sh:datatype xsd:date]

[sh:path schema:productId ;
sh:pattern "^[A-Z]"]

) .

Extending by composition

:Product {
schema:productId xsd:string
schema:price xsd:decimal

}

:SoldProduct @:Product AND {
schema:purchaseDate xsd:date ;
schema:productId /^[A-Z]/
}

Reusability - Extending shapes (2)

ShEx: no special treatment for rdfs:Class,
rdfs:subClassOf, ...

By design, ShEx has no concept of Class

Not possible to extend by declaring
subClass relationships

No interaction with inference engines

SHACL shapes can also be extended by
leveraging subclasses

:Product a sh:NodeShape, rdfs:Class ;
...as before...

:SoldProduct a sh:NodeShape, rdfs:Class ;
rdfs:subClassOf :Product ;
sh:property [sh:path schema:productId ;

sh:pattern "^[A-Z]"
] ;
sh:property [sh:path schema:purchaseDate ;

sh:datatype xsd:date
] .

Extending by leveraging subclasses

SHACL subclasses may differ from RDFS/OWL subclases

Reusability - Extending shapes (3)

ShEx 2.2 is planning to add extends

extends keyword added to the language

SHACL doesn't have this feature

:Product {
:code /P[0-1]{4}/ ;
}

:Book extends :Product {
:code /^isbn:[0-1]{10}/
}

:phone :code "P4356" .

:mobyDick :code "P4789",
"isbn:9876543210"

Basic cases can be emulated with AND

Exclusive-or and alternatives

ShEx operator | declares choices SHACL provides sh:xone for exactly one, but…

:Person {
foaf:firstName . ; foaf:lastName .

| schema:givenName . ; schema:familyName .
}

:alice foaf:firstName "Alice" ;
foaf:lastName "Cooper" .

:bob schema:givenName "Robert" ;
schema:familyName "Smith" .

:carol foaf:firstName "Carol" ;
foaf:lastName "King" ;
schema:givenName "Carol" ;
schema:familyName "King" .

:dave foaf:firstName "Dave" ;
foaf:lastName "Clark" ;
schema:givenName "Dave" .

:PersonShape a sh:NodeShape;
sh:xone (
[sh:property [

sh:path foaf:firstName;
sh:minCount 1; sh:maxCount 1

] ;
sh:property [
sh:path foaf:lastName;
sh:minCount 1; sh:maxCount 1

]]
[sh:property [

sh:path schema:givenName;
sh:minCount 1; sh:maxCount 1

] ;
sh:property [
sh:path schema:familyName;
sh:minCount 1; sh:maxCount 1

]]
) .

☺

☺

☺ ?

☺

☺

 It doesn't check partial matches

Exclusive-or and alternatives

ShEx operator | declares choices SHACL solution with normalization…

:Person {
foaf:firstName . ; foaf:lastName .

| schema:givenName . ; schema:familyName .
}

:alice foaf:firstName "Alice" ;
foaf:lastName "Cooper" .

:bob schema:givenName "Robert" ;
schema:familyName "Smith" .

:carol foaf:firstName "Carol" ;
foaf:lastName "King" ;
schema:givenName "Carol" ;
schema:familyName "King" .

:dave foaf:firstName "Dave" ;
foaf:lastName "Clark" ;
schema:givenName "Dave" .

:Person a sh:NodeShape;
sh:or (
[sh:property [

sh:path foaf:firstName;
sh:minCount 1;
sh:maxCount 1
];
sh:property [
sh:path foaf:lastName;
sh:minCount 1;
sh:maxCount 1
];

sh:property [
sh:path schema:givenName;
sh:maxCount 0

];
sh:property [
sh:path schema:familyName;
sh:maxCount 0

];
]

☺

☺

☺

☺

[sh:property [
sh:path foaf:firstName;
sh:maxCount 0

];
sh:property [
sh:path foaf:lastName;
sh:maxCount 0

];
sh:property [
sh:path schema:givenName;
sh:minCount 1;
sh:maxCount 1

] ;
sh:property [
sh:path schema:familyName;
sh:minCount 1;
sh:maxCount 1

];
])
.

Annotations

ShEx allows annotations but doesn't have
predefined annotations yet

Annotations can be declared by //

SHACL allows any kind of annotations and has
some non-validating built-in annotations

Built-in properties: sh:name, sh:description,
sh:defaultValue, sh:order, sh:group

:Person {
// rdfs:label "Name"
// rdfs:comment "Name of person"
schema:name xsd:string ;
}

:Person a sh:NodeShape ;
sh:property [
sh:path schema:name ;
sh:datatype xsd:string ;
sh:name "Name" ;
sh:description "Name of person"
rdfs:label "Name";
] .

Apart of the built-in annotations,
SHACL can also use any other annotation

Validation report

ShEx defines a result shape map

It contains both positive and negative
node/shape associations

It doesn't specify the structure of errors

SHACL defines a validation report

Describes only the structure of errors

Some properties can be used to control
which information is shown
sh:message

sh:severity

Extension mechanism

ShEx uses semantic actions

Semantic actions allow any future
processor
They can be used also to transform RDF

SHACL has SHACL-SPARQL

SHACL-SPARQL allows new constraint
components defined in SPARQL
[See example in next slide]

It is possible to define constraint components
in other languages, e.g. Javascript:Event {

schema:startDate xsd:date %js:{ start = o %} ;
schema:endDate xsd:date %js:{ end = o %} ;
%js: { start < end %}
}

Stems

ShEx can describe stems Stems are not built-in

:Employee {
:homePage [<http://company.com/> ~]
}

:StemConstraintComponent
a sh:ConstraintComponent ;
sh:parameter [sh:path :stem] ;
sh:validator [a sh:SPARQLAskValidator ;
sh:message "Value does not have stem {$stem}";
sh:ask """
ASK {
FILTER (!isBlank($value) &&
strstarts(str($value),str($stem)))

}"""
] . :Employee a sh:NodeShape ;

sh:property [
sh:path :homePage ;
:stem <http://company.com/>
] .

Stems are built into the language

Example:
The value of :homePage starts by <http://company.com/>

But can be defined using SHACL-SPARQL

End of first part

Introduction to ShEx/SHACL foundations

Warning: A more abstract perspective

Foundations of ShEx and SHACL

A short introduction to the theoretical foundations

The section is based on several papers (see references)

For ShEx/SHACL we present:

- Abstract syntax of a core ShEx/SHACL language

- Semantics

- Simple validation algorithm

RDF data model

Typical definition of an RDF graph Example

Operations on RDF graphs

Operations on RDF graphs

Partition of a graph

ShEx abstract syntax

Example of a shape expression

Fixed Shape Maps

Denoted by

Also known as Shape assignments, Shape typing, ...

Pairs or

Example:

Actions on shape map typings:

Semantics: Shape Expressions (se)

Semantics: Triple expressions (te)

Validation algorithm

SHACL abstract syntax

SHACL semantics

SHACL
validation

Foundations ShEx/SHACL

ShEx language [Prud'hommeaux, 14]

ShEx Complexity [Staworko, 15]

Negation but no recursion [SHACL Rec.]

Stratification (ShEx) [Boneva 17]

Recursion + negation for SHACL [Corman 18]

Converting between ShEx and SHACL [SHaclEx]

Common language S [Labra 19]

DCTAP [https://dcmi.github.io/dctap/]
Stable model semantics SHACL [Andresel 20]

ShEx SHACL

DCTAP

S

https://dcmi.github.io/dctap/

References

[Prud'hommeaux 14] Eric Prud'hommeaux, José Emilio Labra Gayo, Harold R. Solbrig: Shape expressions: an RDF
validation and transformation language. SEMANTICS 2014: 32-40

[Staworko 15] Slawek Staworko, Iovka Boneva, José Emilio Labra Gayo, Samuel Hym, Eric G. Prud'hommeaux, Harold
R. Solbrig: Complexity and Expressiveness of ShEx for RDF. ICDT 2015: 195-211

[Boneva 17] Iovka Boneva, José Emilio Labra Gayo, Eric G. Prud'hommeaux: Semantics and Validation of Shapes
Schemas for RDF. International Semantic Web Conference (1) 2017: 104-120

[Corman 18] Julien Corman, Juan L. Reutter, Ognjen Savkovic: Semantics and Validation of Recursive SHACL.
International Semantic Web Conference (1) 2018: 318-336

[Labra 19] Labra G. J.E., García-González H., Fernández-Alvarez D., Prud’hommeaux E. (2019) Challenges in RDF
Validation. Current Trends in Semantic Web Technologies: Theory and Practice. Studies in Computational
Intelligence, vol 815. Springer, Cham. http://doi-org-443.webvpn.fjmu.edu.cn/10.1007/978-3-030-06149-4_6

[Andresel 20] Medina Andresel, Julien Corman, Magdalena Ortiz, Juan L. Reutter, Ognjen Savkovic, Mantas Simkus:
Stable Model Semantics for Recursive SHACL. WWW 2020: 1570-1580

http://doi-org-443.webvpn.fjmu.edu.cn/10.1007/978-3-030-06149-4_6

Further info

Further reading:
• Validating RDF data, chapter 7. http://book.validatingrdf.com/bookHtml013.html

Other resources:

• SHACL WG wiki: https://www.w3.org/2014/data-shapes/wiki/SHACL-ShEx-Comparison

• Phd Thesis: Thomas Hartmann, Validation framework of RDF-based constraint
languages. 2016, https://publikationen.bibliothek.kit.edu/1000056458

http://book.validatingrdf.com/bookHtml013.html
https://www.w3.org/2014/data-shapes/wiki/SHACL-ShEx-Comparison
https://publikationen.bibliothek.kit.edu/1000056458

Acknowledgments

Irene Polikoff provided feedback on a previous version of these slides

Vladimit Alexiev helped with this list of ShEX/SHACL implementations:

https://github.com/validatingrdf/validatingrdf.github.io/wiki/Updated-list-of-implementations

https://github.com/validatingrdf/validatingrdf.github.io/wiki/Updated-list-of-implementations

End

This presentation was part:

http://www.validatingrdf.com/tutorial/iswc2024/

http://www.validatingrdf.com/tutorial/iswc2024/

	Introduction
	Slide 1: ShEx & SHACL compared
	Slide 2: Several common features…
	Slide 3: But several differences…
	Slide 4: Emphasis on description - validation - constraints
	Slide 5: Underlying philosophy
	Slide 6: Design principles
	Slide 7: Syntactic differences
	Slide 8: Semantic specification
	Slide 9: Compact Syntax
	Slide 10: Compact syntax
	Slide 11: RDF vocabulary
	Slide 12: Notion of Shape
	Slide 13: Default cardinalities
	Slide 14: Property paths
	Slide 15: Property paths
	Slide 16: Property paths
	Slide 17: Inference
	Slide 18: Inference and triggering mechanism
	Slide 19: Repeated properties
	Slide 20: Repeated properties
	Slide 21: Recursion
	Slide 22: Recursion (with target declarations)
	Slide 23: Recursion (with property paths)
	Slide 24: Closed shapes
	Slide 25: Closed shapes and paths
	Slide 26: Property pair constraints
	Slide 27: Modularity
	Slide 28: Reusability - Extending shapes (1)
	Slide 29: Reusability - Extending shapes (2)
	Slide 30: Reusability - Extending shapes (3)
	Slide 31: Exclusive-or and alternatives
	Slide 32: Exclusive-or and alternatives
	Slide 33: Annotations
	Slide 34: Validation report
	Slide 35: Extension mechanism
	Slide 36: Stems
	Slide 37: End of first part

	ShEx SHACL Foundations
	Slide 38: Introduction to ShEx/SHACL foundations
	Slide 39: Foundations of ShEx and SHACL
	Slide 40: RDF data model
	Slide 41: Operations on RDF graphs
	Slide 42: Operations on RDF graphs
	Slide 43: ShEx abstract syntax
	Slide 44: Example of a shape expression
	Slide 45: Fixed Shape Maps
	Slide 46: Semantics: Shape Expressions (se)
	Slide 47: Semantics: Triple expressions (te)
	Slide 48: Validation algorithm
	Slide 49: SHACL abstract syntax
	Slide 50: SHACL semantics
	Slide 51: SHACL validation
	Slide 52: Foundations ShEx/SHACL
	Slide 53: References
	Slide 54: Further info
	Slide 55: Acknowledgments
	Slide 56: End

